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Overview

In this paper I describe a simple model of photon transport.  This simple model includes:
tabulated cross sections and average expected energy losses for all elements between hydrogen (Z
= 1) and fermium (Z = 100) over the energy range 10 eV to 1 GeV, simple models to analytically
describe coherent and incoherent scattering, and a simple model to describe fluorescence.  This is
all of the data that is required to perform photon transport calculations.

Each of these simple models is first described in detail.  Then example results are presented to
illustrate the accuracy and importance of each model.

These models have now been implemented in the Epic (Electron Photon Interaction Code).  All of
the figures and results presented here are from Epicshow, an interactive program to allow access
to the Epic data bases, and Epicp, a simple photon transport code designed to develop optimum
algorithms for later use in Epic.  Epicp is made up of four parts:  1) a simple unoptimized driver
to perform transport calculations, 2) an i/o package to handling reading of the binary, random
access data files, 3) a physics package to handle kinematics of all processes, 4) a utility package
containing all computer dependent routines, e.g., define running time, initialize random number
sequence, etc.  The focus is on optimizing parts 2) and 3) for later use in Epic; these are the parts
that are of general interest, since they can be used in any photon transport code.  Epicshow and
Epicp and the Epic data bases are now available from the author.

Treatment of Integral Parameters

In this section, I discuss the treatment of integral parameters, which includes:  total photoelectric,
coherent and incoherent scattering, pair and triplet production cross sections, photoelectric
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subshell cross sections, and expected energy deposition for photoelectric, incoherent scattering,
pair and triplet production.

The data used is based on the Livermore Evaluated Photon Data Library (EPDL), which includes
data for all elements between hydrogen (Z = 1) and fermium (Z = 100), over the energy range 10
eV to 100 GeV(1).  This data has been adopted as the ENDF/B-VI Photon Interaction Library (2),
but at the request of the Cross Section Evaluation Working Group (CSEWG), the ENDF/B-VI
data has been restricted to the energy range 10 eV to 100 MeV.

In addition to the basic integral cross sections describing coherent, incoherent, photoelectric, pair
and triplet production, EPDL also includes photoelectric cross sections for each atomic subshell
and expected energy deposits for each process.  EPDL also includes form factors and scattering
functions to describe coherent and incoherent scattering, respectively.  The ENDF/B-VI library
includes the photoelectric subshell cross sections, form factors and scattering functions, but not
expected energy deposits (there are no ENDF/B formats for these quantities).

In evaluating the EPDL data, each physical process for each element was considered separately.
The result is data represented on a different energy grid for each process and each element and
generally requiring log-log interpolation between the tabulated results.  Using this data in this
form in applications would be extremely cumbersome, very expensive and simply not practical.

For use in applications the data has been reduced to simple tabulated form.  For each element, all
cross sections and average expected energy deposits are all in a simple tabulated form where all
parameters are tabulated at the same energies and the tabulated energy points have been selected
to allow linear interpolation to any energy between any two tabulated points.  At the request of
users, the energy range has been extended from the ENDF/B-VI upper limit of 100 MeV, up to 1
GeV.

Table 1 illustrates the Epic photon cross sections for lead in exactly the simple tabulated form that
they are distributed.  The first line defines Z, the number of tabulated points, the atomic weight
and STP density of the element, and the chemical symbol.  The second line identifies each column
that follows:  energy in MeV, six cross sections in barns, expected energy deposit per collision in
MeV(note, the photoelectric energy deposit is the incident energy minus fluorescence energy =
what is considered to be deposited locally).  There are 100 such tables, one after the other for Z =
1 through 100.  There is a similar file of data for the subshell cross sections, form factor and
scattering function parameters, and fluorescence yields.  For use in applications, all of these files
are combined into a single binary, random access file.

The systematic variation of the photoelectric edges as a function of atomic number (Z) does not
allow the data for all of the elements to be accurately represented on a common energy grid for all
elements.  This point will be discussed below.

Once the data for each element has been reduced to the simple tabulated form, described above,
where all parameters are represented on exactly the same energy grid, and can be accurately
represented using linear interpolation between tabulated points, a very efficient and almost trivial
binary search can be used to define the tabulated energy interval within which the current energy
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lies.  Once this is done, ALL of the parameters for an element can be defined as a simple weighted
sum of the contributions from the two tabulated values at the end of the interval.  For example,
assume that the current energy, E, lies between the tabulated energies, Ej-1 and Ej.  If we define
the weights,

Weight J    = E − Ej − 1[ ]/ Ej − Ej − 1[ ]
Weight j − 1 = 1 − Weight j

(1)
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then ANY and ALL parameters can be defined at energy, E, as,

F(E) = Weight j * F j + Weight j − 1 * F j − 1 (2)

where F is any parameter of interest, e.g., photoelectric or pair production cross section,
incoherent or photoelectric energy deposit, K or L1 photoelectric subshell cross section, etc. and
Fj-1, and Fj are the tabulated values of F at Ej-1 and Ej, respectively.

To represent all of the data over the entire energy range from 10 eV up to 1 GeV and allow
accurate linear interpolation between tabulated points requires no more than 255 points for any
given element.  In creating the files, no attempt was made to keep the number of points under this
limit; it just happened naturally.  But the result is obviously ideal for facilitating a quick and
efficient binary search.

Formerly, people have attempted to fit the photon interaction cross sections to analytical
expressions that could be used in applications.  This approach worked quite well to represent the
basic cross sections and has been very successfully used in the past.

If we wish to perform more detailed photon transport calculations where we require more detailed
information, such as photoelectric subshell cross sections, over more extended energy ranges, the
approach of using analytical expressions becomes impractical.

In the case of the approach used here, a combination of 19 different cross sections and energy
depositions can ALL be defined at any given energy as this simple weighted average of two
tabulated terms.  If one attempted to fit all of this data to analytical expressions and then had to
evaluate each of the analytical expressions at each energy during a transport calculation, it seems
clear which approach would be both faster and more accurate, i.e., the old approach of using
analytical expressions simply is not practical to use for more detailed calculations.

Photon Scattering

In the following sections, discussing photon scattering, we will only be interested in developing
methods to efficiently sample the normalized scattering distributions.  We assume that the cross
section for each process has already been defined and what we are interested in is:  given that a
coherent or incoherent scattering event has occurred (based on the cross sections), what is the
angular, and in the case of incoherent also the energy, distribution of the scattered photons.

Below, we will see that based on the equations describing coherent and incoherent scattering, the
most “natural” angular variable to use is neither angle nor cos, but rather 1 - cos; and more
generally E2 (1 - cos), where cos is the cosine of the photon scattering angle.
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Coherent Scattering

The angular distribution of coherently scattered photons is a product of Rayleigh scattering and a
correction factor,

sig(cos) = R(cos)*f(E,cos)

R(cos) = Rayleigh scattering

f(E,cos) = correction factor

E = incident photon energy

cos = photon scattering cosine

R(cos)           =  [cos2 + 1]
                      =  [2 − x * (2 − x)], x = 1 − cos

f (E,cos) = [FF(E,cos) + AS(E)]2 (4)

FF(E,cos) = the Form Factor

AS(E) = the Anomalous Scattering Factor

The anomalous scattering factor plays an important role by creating minima in the coherent
scattering cross section just below photoelectric edges and in causing the coherent scattering
cross section to approach zero as Ε2 as energy approaches zero (3).

It plays a less important role in that it effects the angular distribution of coherently scattered
photons near photoelectric edges.

The important effect of the anomalous scattering factor on the coherent cross section has been
included in the EPDL cross sections.  The less important effect of the anomalous scattering factor
on the angular distributions near photoelectric edges will be ignored here; so that we assume,

f (E,cos) = FF(E,cos2 ) = Form Factor squared (5)

Generally for use in applications, the form factor is represented in tabulated form that is then fit by
some procedure (e.g., cubic spline) and sampled.

Here we will use an analytical expression that is simpler and more efficient to sample.
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For a hydrogen atom the form factor is  (4),

FF(E,cos) = Z / [1 + B * x]2, x = Ε2 * (1 − cos) (6)

For more complicated atoms, the form factor can be represented by a sum of terms, with each
term corresponding to the contribution of each atom subshell, j,

FF(E,cos) = Aj / 1 + Bj * x[ ]
j

∑ Nj
 (7)

so that the form factor squared, that we need for use in applications, can be represented in the
form,
FF2(E,cos) = Aj /[1 + Bj * x]Nj

j
∑     Ak /[1 + Bk * x]Nk

k
∑                                                    (8)

This form is judged to be too complicated and expensive to use in Monte Carlo calculations.  So
we will use the pragmatic approach of representing the form factor in the form,

FF(E,cos)2 = Aj / [1 + Bj * x]N

j
∑ (9)

and use Aj, Bj and N as free parameters to fit tabulated form factors.  N is easily defined by
examining the high energy shape of the form factor, where,

Bj*x >> 1

in which case the shape is given by,

Aj / [Bj * x]N = C / [x]N ,where C = Aj / BjN

j
∑

j
∑ (10)

so that N is merely the high energy log slope of the form factor.  Aj and Bj are then defined to
obtain the best fit to the form factor.

In the normally used definition of the form factor, it varies from Z at low energy to 0 at high
energy.  Since here we are fitting the square of the form factor, the one constraint that we have is,

Z 2 = Aj
j

∑ (11)

It has been found that the tabulated EPDL form factors can be very accurately fit using no more
than a sum of three terms.  For hydrogen and helium where we only have one atomic shell (K),
only one term is required. For Z = 3 To 10, we have K and L shells, and only two terms are
required. For higher Z elements more terms are required as the effect of each subshell can be seen.
However, since generally coherent scattering is described as an interaction between a photon and
the inner most, most tightly bound electrons of an atom we do not see a sum corresponding to
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contributions from each subshell; the sum seems to saturate and involve contributions from only
up to three discernible terms.  The power N varies smoothly from 4 for hydrogen(Z = 1) to about
2.43 for fermium (Z = 100).

Figs. 1 and 2 illustrate comparisons between the original EPDL form factors and the fits that can
be used in applications.  These figures illustrate results for elements across the periodic table, Z =
1, 10, 20, 30, 40, 60, 80 and 100.  The results indicate that these simple fits can be used to
approximate the square of the form factor over ten to twelve decades of variation, i.e., well
beyond the range that we can normally statistically sample.

As can be seen from these figures, at low energy the form factor is virtually isotropic and
sampling only involves sampling the Rayleigh cross section.  However, at higher energies the form
factors are very strongly forward peaked and dominate the definition of the angular distribution of
coherently scattered photons.

This suggests using a rejection technique to first analytically sample the form factor and then
accept or reject based on the Rayleigh cross section.

The integral of each term of our fit is,

P'  = Aj * dy' /[1 + Bj * E2 * y' ]N

0

y

∫
     = Aj / (Bj * E2 )[ ]* 1 − 1 / [1 + Bj * E2 * y]N− 1{ }/ N − 1( )

(12)

=  
Aj * (1 + Bj * E2 * y)N − 1 − 1[ ]

(N − 1)* Bj * E2 * (1 + Bj * E2 * y)N − 1[ ]                                                                 (13)

The normalization is defined by setting y = 1 - cos = 2,

        = 
Aj * (1 + Bj * E2 * 2)N − 1 − 1[ ]

(N − 1)* Bj * E2 * (1 + Bj * E2 * 2)N − 1[ ]                                                                (14)

The normalization can be calculated in advance for each of the terms of the fit as a function of
incident energy at the same energies at which the cross sections are tabulated.  Then when a
coherent scatter occurs, the tabulated normalization can be used to quickly randomly select one of
the three terms based on its normalization, i.e., its contribution to the sum of terms.
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From this point on, we need only be concerned with randomly sampling the one term of the series
that we have selected.  The normalized form for one term is,

           = 
Aj / Bj * E2( ) 

 
 
 * 1 − 1/ 1 + Bj * E2 * y[ ]N − 1 

 
 

 
 
 

/(N − 1)

Aj / Bj * E2( ) 
 

 
 * 1 − 1/ 1 + Bj * E2 * 2[ ]N − 1 

 
 

 
 
 

/(N − 1)   
(15)

           = 
1 − 1/ 1 + Bj * E2 * y[ ]N − 1 

 
 

 
 
 

1 − 1/ 1 + Bj * E2 * 2[ ]N − 1 
 
 

 
 
 
    

(16)

         P =
1 − 1/ 1 + Bj * E2 * y[ ]N − 1 

 
 

 
 
 

1 − 1/ 1 + Bj * E2 * 2[ ]N − 1 
 
 

 
 
 

,  P =  a random number,  0  to 1                              (17)

The scattering angle is then defined by analytically inverting and solving for y (y = 1 - cos),

 

 

Define, Q = Bj * E2

             D = 1 + 2 * Q
             E = 1 + y * Q

            C =1 / 1 − 1 / D N − 1[ ]
(18)

                           P = 1 − 1/ E N − 1{ }/ 1 − 1/ DN − 1{ }
 1 − 1/ DN − 1[ ]* P = 1 − 1/ EN − 1

Inverting and solving for y,

y =       

D − P + (1 − P) * DN − 1[ ] 1
N-1( )

 
  

 
   

 
 
 

  

 
 
 

  

Q * P + 1 − P( )N − 1[ ]  
1

N-1( )
 
  

 
  

                                                                   (19)
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The above equations may seem complicated, but the entire sampling only involves, select a
random number P, and then define,

 

Q = Bj * E2

D = 1 + 2 *Q

F = P + (1 − P)* DN − 1[ ]  
1

N − 1( )
 
  

 
  

y = D − F[ ]/ Q* F[ ]

(20)

The two limits of P = 0 and P = 1 can be easily seen to correspond to,

P = 0
F = D
y = D − D[ ]/ [Q* D]  = 0  =1 −  cos, cos = + 1

(21)

P = 1
F = 1
y = D − 1[ ]/ Q = 2 *Q / Q = 2 = 1 − cos, cos  =  − 1

(22)

At low energy, where,

Q = Bj * E2 <<1
D = 1 + 2 *Q

We can expand terms,

DN − 1                                                   ~1 + 2 * (N − 1) * Q (24)

P + (1 − P)* DN − 1                              ~ P + 1 − P( )* 1 + 2 * N − 1( )* Q[ ]
                                                         ~ 1 + 1 − P( )* 2 * N − 1( )* Q

(25)

P + (1 − P)* DN − 1[ ]  
1

N-1( )
 
  

 
         ~ 1 + (1 − P) * 2 *Q (26)
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D − P + 1 − P( )* DN − 1[ ]  1
N − 1[ ]   ~ 1 + 2 * Q − 1 + 1 − P( )* 2 * Q[ ]

                                                       ~ 2 * Q* 1 − 1 − P( )[ ]
                                                       ~ 2 * Q* P

(27)

y ~ 2 *Q * P / Q * 1 + (1 − P)* 2 * Q[ ] { }
~ 2 * P / 1 + 1 − P( )* 2 * Q[ ] (28)

almost isotropic (the 2*P term in the numerator) with a presumably small correction term in the
denominator (presumably small, since we assumed Q << 1).

Lastly accept or reject based on the Rayleigh cross section; an energy independent efficiency of
66% (i.e., 2/3).

Incoherent Scattering

The angular distribution of incoherently scattered photons is a product of the scattering function
and the Klein-Nishina formula,

sig(cos) = SF(E,cos)* KN(E,cos) (29)

SF(E,cos) = the scattering function
KN(E,cos) = Klein-Nishina formula

                   

= C * A' /A( )2 * A / A' + A' /A − 1 + cos2[ ]
= C * A' /A( )2 * 1 + cos2( )+ A / A' + A' /A − 2( )[ ]
= C * A' /A( )3 * 1 + cos2( )* A / A'( )+ A / A'( )* A / A' + A' /A − 2( )[ ]

(30)

A = photon incident energy in electron rest mass units.

The energy of the scattered photon is,

A' = A / 1+ A* x[ ], x = 1 − cos (31)

Substituting for A’ and canceling terms we find,
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KN(E,cos) =   
1 + cos2[ ] 1 + A * x[ ]+ A * x[ ]2

1 + A* x[ ]3

                  =   
2 − x * 2 − x( )[ ]* 1 + A * x[ ]+ A * x[ ]2

1 + A* x[ ]3    , x =1 − cos

(32)

Note, at low energy as A approaches zero, the Klein-Nishina equation approaches Rayleigh
scattering,

KN E,cos( )→ 1 + cos2[ ] (33)

and the energy of the scattered photon approaches that of the incident photon, i.e., the energy loss
approaches zero and incoherent scattering approaches coherent scattering.

As in the case of coherent scattering, we will use an analytical expression to represent the
scattering function. For hydrogen we have the relationship,

SF E,cos( )+ FF E,cos( )2 = 1 (34)

Although this is strictly not valid for other elements it is often used as an approximation.
However, this suggests using,

SF E, cos( )= Z − FF' (35)

where FF’ has the same functional form as our fit for the form factor squared,

FF' = Aj / 1 + Bj * x[ ]
j
∑ N

(36)

For each element we will use the same value of N as previously defined for the form factor
squared, and Aj and Bj will be treated as fitting parameters.  Note Aj and Bj here need not be the
same as those defined for coherent scattering, e.g., for coherent scattering the sum of the Aj is Z2,
whereas here it is Z.  However, when rescaled for this difference, they are very similar as
predicted by equations 34 and 35; for hydrogen they are virtually identical.

At low energy the scattering function approaches zero as E2 in the forward direction and at high
energies it approaches unity in the backward direction; indeed in almost all directions, except the
extreme forward direction.

For the normally used definition of the scattering function, it varies from 0 at low energy to Z at
high energy.  Therefore the one constraint that we have is,

Z = Aj
j

∑ (37)

and we can write,
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SF(E, COS) = Z −
j
∑ Aj / 1 + Bj * x[ ]N}

                   =  
j
∑ Aj − Aj / 1 + Bj * x[ ]N{ }

                   =  
j
∑ Aj * 1 + Bj * x[ ]N − 1{ }/ 1 + Bj * x[ ]N

(38)

The results are similar to those obtained for coherent scattering, in the sense that it has been found
that in no case are more then three terms required to obtain excellent agreement between the
EPDL scattering functions and the fit.  One term is adequate for Z = 1 or 2, where we only have
one shell (K).  Two terms are required for Z = 3 to 10, where we have two shells (K, L).  Higher
Z elements require an additional term.  Incoherent scattering is usually described as an interaction
between a photon and the outer most, most loosely bound electrons.  So what we seem to see is
that the sum rather than including contributions from each subshell, saturates and only requires up
to three terms to represent the contribution of the outer most subshells.

Figs. 3 and 4 illustrate comparisons between the original EPDL scattering functions and the fits
that can be used in applications.

At low energies the scattering function plays an important role in suppressing forward scattering,
compared to the Klein-Nishina formula.  In the case of extreme low energies it essentially
multiplies the Klein-Nishina formula by E2.  At higher energies the scattering function plays very
little role, except at very forward angles where it will always suppress the forward scattering.  At
very high energies it plays essentially no role and is often simply ignored in applications.

This suggests using a rejection technique to first sample the Klein-Nishina formula and then
accept or reject based on our fit.  In this case we need not invert our fit (as was done in the case
of coherent scattering), we merely first sample the Klein-Nishina formula to define x and then
define the sum,

SF E, cos( )=
j

∑ Aj * 1 − 1 / 1 + Bj * x[ ]N{ } (39)

and accept if the sum is greater than or equal to Z times a random number.  The efficiency will
vary from 1/3 at low energy to essentially 1 (100% acceptance) at high energies.

Fluorescence

The Livermore Evaluation Atomic Data Library (EADL) contains data to describe the relaxation
of atoms back to neutrality after they are ionized, regardless of what physical process ionized the
atom, e.g., photoelectric, electron ionization, internal conversion, etc.

The data in EADL includes the radiative and non-radiative transition probabilities for each
subshell of each element, for Z =1 through 100.  Given that an atom has been ionized by some
process that has caused an electron to be ejected from an atom, leaving a “hole” in a given
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subshell, the EADL data can be used to calculate the complete radiative (fluorescence) and non-
radiative (Auger and Coster-Kronig) spectrum of x-rays and electrons emitted as the atom relaxes
back to neutrality (6).

For a K shell photoelectric event in uranium if fluorescence is not considered all of the energy of
the photon is assumed to be deposited locally, at the point of the event.  If fluorescence is
considered, a portion of the approximately 116 keV binding energy of the ejected electron will be
emitted as fluorescence x-rays.  The portion emitted will be independent of the photons incident
energy, i.e., every photoelectric event leads to an ionized atom that will then return to neutrality,
independent of how it was ionized.

Figs. 5 and 6 illustrate that these spectra can be quite complex.  In this case a single “hole” in the
K shell of uranium statistically leads to the emission of 154 different energy x-rays and 2772
different energy electrons.  Of course in any single given event far fewer x-rays and electrons are
emitted, but when averaged over a large number of  such events this will be the observed emitted
spectra.  The most important point to note is that rather than the entire energy being deposited
locally, over 89% of the binding energy is re-emitted as fluorescence x-rays.  These x-rays are
emitted just below photoelectric edges, where the cross sections an be quite small, which allows
these x-rays to be quite penetrating.  In absolute terms this means that a photoelectric event due
to a photon just above the K edge at 116 keV will lead to the emission of about 100 keV of
fluorescence x-rays - 89% of its energy; a 1 MeV photon will also result in about 100 keV of
fluorescence x-rays - about 10% of its energy, etc.  In the case of a 116 keV photon the local
deposition will only be 16 keV.  However, if fluorescence is not considered, it is assumed to be
116 keV; over 700% higher than the actual value.  This over estimation will decrease at higher
energies, but even by 1 MeV it will still be about 10% too high.  From Fig. 5 we can see that most
of the fluorescence x-ray energy will be emitted in a narrow band near 100 keV, just below the K
edge where the cross section is only about 25% of the cross section at the top of the K edge,
allowing these x-rays to be quite penetrating.  For photon transport calculations extending down
to energies below several MeV, to realistically model the transport, these fluorescence x-rays
should be included in calculations.

This point has been recognized for many years and fluorescence has been included in modern
Monte Carlo photon transport codes (7, 8).  In these codes the “jump” in the photoelectric cross
sections across an edge is used to estimate the fluorescence yield for each subshell.

Now that the photoelectric subshell cross sections are available from EPDL and the fluorescence
yield is available from EADL we can use a more detailed model for fluorescence.  The subshell
cross sections can be used to define what subshell was ionized, and once a subshell is selected our
fluorescence yield data can be used to define the emitted x-rays.  However, to be able to do this
efficiently in calculations we must decide what is or is not important and try to include only those
details that are important.

These spectra are judged to be too complicated to sample in detail in applications. However, the
most important details can be efficiently sampled. We can use the fact that fluorescence decreases
by roughly an order of magnitude for each successive shell.  For example, in the case of uranium
the fluorescence due to a K shell vacancy is almost 100%, whereas the L shell will be about 10%,
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the M shell about 1%, etc.  In addition we can divide the photon spectrum into those x-rays due
to the initial vacancy being filled (what I will refer to as direct or primary x-rays) which are the
most energetic x-rays emitted, and those x-rays due to vacancies generated in other shells as the
atom relaxes back to neutrality (what I will refer to as secondary x-rays).  I will refer to the
combination of direct or primary and secondary as the enhanced or total yield.

Fig. 5 illustrates the emitted x-rays (fluorescence) due to a single vacancy in the K shell of
uranium.  The boxes represent the individual emissions and the solid line represents the integral of
the emitted energy spectrum.  From this figure we can see that there are 154 individual x-rays
emitted, but most of the emissions in terms of probability and energy are in two narrow energy
bands just below the K and L edges; these two bands correspond to the direct and secondary
fluorescence yields.  Based on the integral of the spectrum, in this case the primary fluorescence
just below the K edge accounts for about 95% of the emitted x-ray energy and the secondary
emission just below the L edge another 4.8%.  The entire remainder of the spectrum accounts for
only about 0.2% of the emitted x-ray energy, which is small compared to the uncertainty in the
emitted spectrum.  This suggests that for use in applications rather than attempting to model the
entire emitted fluorescence x-ray spectrum all we need model are the two narrow bands of
emission just below the K and L edges, in the case of a K shell vacancy; or L and M, for L
vacancies; M and N, for M vacancies, etc.

Based on the EADL data, we can calculate (6) the direct and secondary fluorescence yields, both
in terms of number of photons and energy emitted as fluorescence for every subshell of every
atom (Z =1 through 100).  For use in calculations, this data has been reduced to a form where a
vacancy in any subshell can result in the emission of up to two fluorescence x-rays where the
emission probabilities and energies have been defined to exactly conserve the direct and enhanced
fluorescence yields, both in terms of number and energy.  These two x-rays per vacancy can
accurately model the two narrow bands of emitted x-rays just below the K and L edges that we
saw in the Fig. 5.

Since the fluorescence yield decreases rapidly with subshell, an accurate model of fluorescence
yield does not require all of the individual subshells to be represented.  For use in applications the
photoelectric subshell cross sections have been grouped in:  K, L1, L2, L3, M, N, O, P, Q, i.e.,
the most important inner subshells of K and L are represented separately, and the remaining
subshells of each shell are grouped together.  Furthermore, fluorescence is only considered for K,
L1, L2, L3, M and N, which tracks the yield down to a very low level, well below the uncertainty
in our atomic relaxation data.

Following each photoelectric event we first use the subshell cross sections to randomly select an
electron vacancy in a subshell.  Once this has been done, the probability of fluorescence yield for
that subshell is used to randomly emit x-rays of a given energy; up to two x-rays per primary
vacancy are allowed.  Even in the extreme case of high Z elements where the K shell fluorescence
yield can approach 100%, the two x-rays allowed in this model will track the yield from K shell
vacancies down to about 1%.  By allowing individual subshells to be sampled the fluorescence
will be tracked down ever further in energy, e.g., if we had statistically sampled a vacancy in an L
subshell the yields could approach about 10% and 1%, tracking the yield down to about 0.1%.
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Pair and Triplet Production

In the case of pair production, the photon interacts with the field of an entire atom.  The photon
disappears and an electron-positron pair is created.  The sum of the energies of the electron-
positron pair is the incident energy of the photon minus the rest mass of the electron-positron
pair.

In the case of triplet production the photon interacts with the field of an electron.  The photon
disappears and an electron-positron pair is created, and an electron is ejected from the atom
(leaving an ionized atom).  The sum of the energies of the electron-positron pair plus the ejected
electron is the incident energy of the photon minus the rest mass of the electron-positron pair and
the binding energy of the ejected electron.  Compared to the energies of the electron-positron
pair, generally the energy of the ejected electron is quite small.

Pair and triplet production are fairly complicated processes, since they are three body processes.
For example, in pair production the electron and positron need not equally share the available
kinetic energy; indeed at higher energies the spectrum for both becomes quite wide. Here I will
merely mention that this spread in the spectra will effect bremsstrahlung emitted by the electron
and positron as they slow down in the medium.

Here I will use the simplest possible model for pair and triplet production. I will assume that the
electron and positron both slow down and come to rest close to the point of the pair or triplet
production event.  Therefore, all of their kinetic energy will be deposited locally, and when the
positron annihilates two 0.511 MeV photons are created at the point of the pair or triplet event.
In the case of triplet production, I will also ignore the low energy ejected electron and the ionized
atom.

Later in this paper, I will again discuss pair and triplet under the section What’s Next?

The Importance of Each Process

Fig, 7 illustrates the photon cross sections for four elements spaced across the periodic table.  In
all cases the variation of the cross sections are smooth functions of Z, so that even from merely
these four examples we can see all of the trends of the various cross sections.  This figure was
produced interactively using Epicshow; the top of the figure shows the Epicshow mouse driven
interactive user interface.

Generally, at low energy photoelectric is by far the dominant process.  In comparison, the
coherent and incoherent cross sections are so much smaller that they are of importance only in
special calculations, such as back scattering measurements, where their cross sections may be
small, but these are the only processes available to back scatter photons.  As described above, at
low energy incoherent scattering approaches coherent scattering (no energy loss) and
photoelectric is the only effective energy loss process for photons.

At low energies, in high Z elements, fluorescence can be a very important effect, since it can
effectively transfer photons from energies above photoelectric edges, where the cross section is
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high, to energies just below the edges, where the cross section can be much smaller; thereby,
allowing these photons to be much more penetrating.  Since at low energies the photoelectric
cross section can be very large, fluorescence can appear almost to be a surface effect, i.e., most of
the photoelectric events above the edges will occur very close to the surface of a high Z element.
This will tend to increase the reflection from high Z elements.  However, it can also contribute to
penetration through materials.  For example, in high Z elements the cross section at the bottom of
the K edge is about 1/4 to 1/5 that of the cross section at the top of the edge.  Therefore, if we
have a material that based on the cross section at the top of the K edge is say 10 mean free paths
thick (we expect little if any transmission), fluorescence can move photons to below the K edge
where the cross section is only 2 to 2.5 mean free paths thick.

At high energies pair and triplet production become the dominant processes.  Above about 10
MeV their cross sections are so much larger than the coherent and photoelectric cross sections
that the latter can be effectively ignored.  Even at fairly high energies incoherent scattering
continues to play an important role and should not be ignored.  At these high energies coherent
and incoherent scattering are very forward peaked, and cause very little back scatter.

At intermediate energies between the high keV and low MeV regions incoherent scattering can be
very important.  In this energy range the photoelectric cross section has decreased to a small value
and the pair and triplet production cross sections have not yet become significant.  Therefore, the
only effective process that can decrease the energy of photons is incoherent scattering.  From Fig.
7 we can see that incoherent scattering in this energy range is particularly important for low Z
elements, e.g., hydrogen.  At lower energies the incoherent cross section approaches zero as E2,
and becomes dominated by the rapidly increasing photoelectric.  Similarly, at higher energies the
incoherent cross section decreases, and eventually becomes dominated by the rapidly increasing
pair and triplet production cross sections.

Coherent scattering can be an important process in the keV region, in that by scattering photons it
will tend to keep them from escaping from a medium, but in no case is coherent scattering the
dominant process.  At lower energies the coherent cross section approaches zero as E2, and at
higher energies it also decreases toward zero.  Just below photoelectric edges in high Z elements
the coherent cross section can be a significant contribution to the total cross section, e.g., about
10%, that does effect transport.

Example Results

All of the data discussed above is now available in a simple tabulated format, to allow the data to
be easily moved between computers.  On any given computer it is then converted to binary,
random access files for use in applications. This data can be examined using the program
Epicshow (9) and photon Monte Carlo transport calculations can be performed using program
Epicp (10).

Epicp is designed as a test bed program to develop optimum algorithms for handling photons, for
later use in Epic (Electron Photon Interaction Code). Epicp uses all of the data described in this
report, and allows various models to be turned on or off, to determine the importance of each
model.  For example, coherent and incoherent scattering can be modeled either with or without
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form factors and scattering functions. Photoelectric events can be modeled with or without
fluorescence emission. Cross sections can be modeled using the energies at which they are
tabulated in the data bases (most accurate) or using the same fixed energy grid for all elements
(fastest). By comparing the results and running time using different models we can easily
determine how accurate any given model is and how expensive it is to use. All of the example
results presented below were calculated using Epicp.

Below, I present results to illustrate the use of this data and I also present conclusions that can be
reached from these results.  In all cases I will use a simple geometry, so that we can easily
interpret the results. I will use cylindrical geometry to simulate a detector, and I will calculate:  1)
deposition within the detector, 2) transmission through the detector, 3) reflection from the
detector, and 4) lateral leakage from the detector. No attempt has been made to fold the results
with a detector response function; the results presented are exactly as calculated, and therefore
differ from what one would actually measure with a real detector. This has been done intentionally
in order to emphasize the effects that will be discussed below.

For additional details of the examples presented below and additional examples see the report on
program Epicp, reference 10.

Detector Response and Leakage

In order to correctly interpret the results presented below the reader must understand the
definitions of detector response and leakage used here. Starting from each source photon Epicp
tracks this photon and all photons that it may produce (through pair production, fluorescence,
etc.) until they have all "disappeared", i.e., either leak or are absorbed. For each source photon
this is defined to be one history. The detector response is then defined as one count,
corresponding to the total energy deposited in the detector during the entire history. Since Epicp
only tracks photons, it is assumed that everything happens at the speed of light and rather than
responding separately to each event that occurs within the detector, the detector will add all of the
energy deposited by all events during a history and score a single count corresponding to the total
energy deposited during the entire history.

For example, consider the typical history of a 10 MeV photon incident on the detector. Assume
the initial photon undergoes pair production. The result will be a deposition of the incident energy
of the photon minus the energy of two 0.511 MeV photons produced when the positron
annihilates, but the history isn't finished yet. Each of the 0.511 MeV photons is then separately
tracked. Each may undergo more collisions and deposit all or a portion of their energy, or they
may leak from the detector. Let's consider the energy deposited for three cases: 1) both 0.511
MeV photons are absorbed in the detector = all 10 MeV of the incident photon is deposited, 2)
one 0.511 MeV photon leaks = about 9.5 MeV is deposited, 3) both 0.511 MeV photons leak =
about 9 MeV is deposited. In each of these cases the total amount of energy deposited is recorded
as a single event, so that these three cases correspond to three different energy depositions of
about 10, 9.5 or 9 MeV.

In contrast Epicp defines transmission, reflection and lateral leakage for each event separately. In
the above example the leakage for the three cases is: 1) no leakage, since everything was absorbed
in the detector, 2) one 0.511 MeV photon leaked, 3) two 0.511 MeV photons leaked. It is
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important for the reader to understand the difference between how deposition and leakage are
defined here. In case 3 the deposition will have a single score about 1 MeV below the source
energy, whereas the leakage will have two scores at about 0.5 MeV - not one score at about 1
MeV. Therefore in contrast to deposition where there are three different depositions about 0, 0.5
or 1.0 MeV below the source energy, the leakage will only include either 0, 1 or 2 scores all at
about 0.5 MeV.

When leakage occurs (transmission, reflection or lateral leakage) each event is scored as one
count, without any consideration of the direction of leakage. This corresponds to scoring the first,
not zeroth, angular moment of the photon distribution. To score the zeroth angular moment of the
photon distribution each event should be weighted by the reciprocal of its direction cosine relative
to the normal of the surface it crosses. Therefore the leakage as defined here corresponds to the
source of photons that one would see leaking from the detector.

The definition of deposition used here is designed to correspond to what we would really see
when performing an experimental measurement; except that the effects of electron and positron
transport and the actual response of the detector's electronics have not been included. As we
incorporate more sophisticated models into the calculation this will allow us to use the many
published experimentally measured detector responses to benchmark our calculations.

The definition of leakage used here is designed to provide us with as much information as possible
to understand what is physically happening. For example, in order to conserve energy all of the
energy incident on the detector must either be deposited within the detector or leak from it.
Therefore if Epicp defined leakage in exactly the same way it defines deposition we would end up
with two completely complementary distributions that do not provide much more information
than just one of these distributions. In contrast, with the definition of leakage used here we can
obtain additional information about individual events. For example, for any given history
additional photons may be produced and there can be leakage events corresponding to
transmission, reflection and lateral leakage - all due to only one history. By scoring each of these
separately we can obtain additional information. This may not correspond to anything that can
actually be measured with a real detector (which would add together all events from each history),
which is all right since this is not what the leakage as defined here is intended to be used for. Here
the leakage is defined to provide us with more insight into what is physically happening.

Even though Epicp is primarily designed to perform detector response calculations in cylindrical
geometry, it can also be used to calculate transmission and reflection in planar geometry. In this
case, as defined here the leakage corresponds to what a normal photon calculation would define
as the source of photons transmitted or reflected - let me stress that this is what a transport code
would calculate, not what a detector measurement would indicate (as explained above). Therefore
with the definition of leakage used here the results are directly comparable to those produced by
other photon transport codes, allowing us the possibility to benchmark our results against those of
other codes.

High Energy Application
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The first application is a monoenergetic 4.43 MeV photon incident on a NaI detector 7.62 cm in
diameter and 7.62 cm in depth.  This example is intended merely to introduce the idea of detector
deposition and to point out one approximation that should be avoided.

Figure 8 presents Epicp results for this problem. In this case the analog and expected results have
converged to the point where we cannot see any difference between them.  The transmission,
reflection and lateral leakage are in units of photons per MeV for each contributing individual
event.  In the case of deposition, for each incident photon the total amount of energy deposited is
scored as a single event.  If all of the energy of all incident photons is deposited the result would
be non-zero only at 4.43 MeV.  Instead we see a typical response function.  Note, the peaks about
1 and 0.5 MeV below 4.43 MeV.  These correspond to the build up and escape from the detector
of both or one of the 0.511 MeV photons created by positron annihilation.  The results have not
been folded with the detector response in order to more clear see and understand these two peaks;
in an actual detector response these peaks are much wider.  The transmission, reflection, and
lateral leakage all show peaks due to the leakage of 0.5 MeV photons.  We do not expect a peak
near 1 MeV, since even if both 0.5 MeV photons leak they are scored as two separate 0.5 MeV
photons. In the deposition just above the peaks 0.511 and 1.022 MeV below the source energy
we can see the effect of Compton scattering that has caused photons to lose some of their energy
before leaking, thereby increasing their deposition. We see a complementary effect in the leakage
just below the 0.511 MeV peak.

The continuous spectrum down to low energy seen in figure 8 is the result of Compton scatters,
at the source and lower energies, in which a photon can lose (deposit) any amount of energy
between zero and some maximum amount and then either scatter again or leak. The complement
to this low energy tail in the deposition is the high energy tail in the transmission; photons that
lose a small amount of energy have scattered through a small angle, continue transporting forward
and are transmitted with a high remaining energy. Similar continuous spectra can be seen in the
lateral leakage at lower energy (since the photons must scatter through larger angles to laterally
leak) and at even lower energies in the reflection (the photons must scatter through at least 90
degrees).

In this case the most prominent features in the deposition are the narrow peaks due to pair
production, but most of the energy deposit is due to Compton (incoherent) scattering. For each
MeV of energy incident about 65% is deposited: about 40% from Compton, 21% from pair
production, and 4% from photoelectric. Of the remainder about 27% is transmitted, 7% laterally
leaks and less than 1% is reflected.

One might think that in this case the calculation could be sped up by assuming that rather than
each pair production event leading to two separate 0.511 MeV photons, we could assume that we
will run enough photons histories that we could assume that each pair production events produces
only one 0.511 MeV photon, of weight 2; the large number of photon histories could then be
relied on to supply enough events to adequately describe the position and direction of all such
photons. This assumption actually works quite well to describe the transmission, reflection, and
lateral leakage, but not the deposition. In order to reproduce the two peaks in the deposition one
must track each of the photons separately, otherwise you can never have the case where only one
of them escapes, leading to the peak about 0.5 MeV below the source energy. With the model
used here, where it is assumed the positron comes to rest and two 0.522 MeV photons are
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produced, the direction of the two photons is completely correlated; if one is moving in a given
direction the other is moving in the opposite direction. If you are interested in designing a photon
transport code you should consider these points.

Fixed or Variable Cross Section Energies

There are a number of Monte Carlo codes (7, 8) that use a fixed set of energies to represent all
photon cross sections for all elements.  This simplifies the codes and speeds up the calculation,
e.g., for a photon of a given energy, once you have defined the energy interval in the cross section
tables this can be used to define the cross sections for all materials in all zones.

This approach requires that certain compromises be accepted between speed and accuracy.  For
example, the energy of the K edge of each element is to a good approximation a simple
logarithmic function of atomic number, varying from about 14 eV for hydrogen (Z = 1), to about
140 keV in fermium (Z = 100).  Without using an excessive number of tabulated energy points
over this energy range, it would be difficult to accurately approximate the K edge for all elements.
If we consider not only the K edge, but all other edges, plus the additional general problem of
accurately interpolating in energy between tabulated values, we must conclude that if we wish to
use the same energies for all elements we will have to somehow compromise the accuracy of the
photon cross sections.  Is this important?

This effect will only be important at energies near and below K edges, i.e., in the worse case
below about 150 keV.  For higher energy applications, there is no problem in using the same
energy points for all elements; the only point to be concerned with is properly modeling the onset
of pair production at its 1.022 MeV threshold and triplet production at its 2.044 MeV threshold.
Therefore, the following discussion is only of interest to those readers involved in lower energy
applications.

What we will examine here is: 1) how accurate is this procedure, 2) how much faster is it than
representing the cross sections for each element using a different set of tabulated energies for each
element, 3) what are the real advantages of one approach versus the other.

In an attempt to answer these questions, we will use the 176 energy points used by the TART
code to represent all cross sections and first see what effect this has on both the position of the K
edge and the magnitude of the cross section near the K edge.  The Epic cross sections model each
photoelectric edge as a discontinuity with repeated energy points at the bottom and top of each
edge.  TART represents an edge with the two nearest fixed energy points on either side of the real
edge energy.  How accurate is this?  We will use exactly the procedure used to make the photon
data library used by TART, 1) interpolate the actual photon cross sections to the 176 energies and
define the value strictly based on interpolation (no attempt is conserve integrals or anything else),
2) I will then define the “TART position of the K edge” bottom and top as the first energy at or
below the actual K edge and the first energy at or above the actual K edge, 3) we can then
compare the value of the cross sections at these points to the actual values in EPDL.

Fig. 9 presents results for the entire periodic table, from Z = 5 through 100 (TART only extends
down to 100 eV and as such does not include the K edge of the lowest Z elements).  First the
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figure shows a comparison of the energy of the EPDL K edge to the TART K edge top and
bottom energies.  What we see, is that using the TART 176 energy points can shift the energy of
the top and bottom of the K edge by about 10% for a number of elements. The figure next
compares the value of the cross section at the bottom and top of the K edge for EPDL and
TART.  What we see is that using the TART 176 energy points can increase the bottom cross
section by up to about 30% and decrease the top cross section by up to 30% for a number of
elements.  Lastly, the figure shows the values at both top and bottom of the K edges.  From this
figure we can see that the changes in the cross section due to using the TART 176 points tend to
move the top and bottom values up and down together; fortunately, we do not have any cases
where 30% changes move in opposite directions, thereby, changing the jump ratio across the K
edge by even more.

In order to determine whether or not these changes are important, we can now use the above
results to select some worst cases from the entire periodic table and see what happens in an actual
transport calculation.

On the basis of the changes in the position and magnitude of the cross sections, when using a
fixed energy grid, one might expect to see rather large differences in the results using one method
or the other.  By using a number of Epicp and TART runs focused on where we expect to see
large differences, the results indicate surprisingly little difference in the results.  As long as a
problem involves a broad spectrum of photons, the energy intervals over which the cross sections
are modified near the K edges is small compared to the entire energy range of interest and results
in very little change in overall answers.

However, if the focus of the application is effects near the K, or other edges, then one can see
rather large differences in the results.  For example, obviously, if you decrease the photoelectric
by 30% you expect a decrease in deposition by 30%, but only over the narrow energy range
where the cross section was deceased.  If this is the energy range of interest to you, this is an
important effect.  A second effect to consider, is that in shifting the K edges by up to 10%, it may
no longer be possible to use transmission measurements and calculations defining the position and
strength of K edges to define the composition of a material containing neighboring or near Z
elements.

Figure 10 compares the fluorescence yield as a fraction of the incident photon energy using the
original tabulated energies (as read from the data base), 176 and 401 fixed energy points.  If you
only consider a wide energy range, using fixed energies will have little effect on integral values
(top of figure).  For this particular problem of transport through Z = 90 (where we expect large
differences) there is no significant difference in the integral deposit, transmission, reflection or
lateral leakage; differences occur over such a small portion of the total energy range that the
effect on integral values is simply not significant.  However, if you are interested in very narrow
energy ranges, particularly near edges, using fixed energies can have a significant effect (bottom
of figure).  In this case the fluorescence yield and therefore deposition are obviously effected, but
it is also difficult to see the K edge, which makes it difficult to determine the composition of this
material.  Is this an important effect in your applications?  Only you can answer this question.
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In terms of running time, there is a definite advantage to using fixed energies.  For simple
problems only involving a few materials and zones, there isn’t that much difference between them.
However, as problems become complex and involve more and more materials and zones, using
fixed energies results in significantly less running time. In the latter case, a mixture of materials
decreases the importance of changes across edges, further justifying the use of fixed energies.

In terms of simplicity of the codes, there is a definite advantage to using a fixed energy grid, e.g.,
in complicated geometry defining the cross section when a photon enters each spatial region is
much simpler using a fixed energy grid.

In summary, based on the above results, it appears that each approach can be used to good
advantage in different applications, and it is not possible to make one sweeping general
recommendation that one approach is “better” than the other.  If you are willing to invest the time
to handle different energies for each element you can be sure that your code will be quite general
and need not worry about the special situations described above; be aware, you will pay a penalty
in running time for complicated problems.  However, if you already have a code that uses fixed
energies and you do not want to invest the time to upgrade it, for most calculations involving
broad spectra of photons and only considering integral response over wide energy ranges, fixed
energies are adequate to obtain accurate answers.

Epic tries to accommodate both approaches.  In the Epic data base each element is tabulated
using energies that have been selected to best represent the data.  For use in application the user
has the option to perform calculations using the data exactly as represented in the data base (most
accurate), or using the same, fixed energy grid for all elements (fastest).  Conversion to the latter
form as the data is read from the data base for use in calculations is trivial and does not add any
significant overhead to calculations.  As an improvement over the TART 176 point between 100
eV and 30 MeV, Epic uses 401 points between 10 eV and 1 GeV, with 50 points logarithmically
equally spaced in each energy decade; this completely uniform spacing from 10 eV to 1 GeV
allows the energy interval for cross section lookup to be defined using a single line of FORTRAN
coding.  Similar to the above results for TART (Fig. 9), Fig. 11 shows results for this 401 fixed
point energy grid.  From this figure we can see that the 401 points results in shifts of K edge
energies by up to 4% (compared to 10% for TART), and changes in the cross section by up to
10% (compared to 30% for TART).  With this approach users can select whatever scheme is
most appropriate for their calculations, i.e., either accuracy or speed.

It is worth observing that there have been great improvements in the detail included in modern
neutron evaluations and this detail has been included in modern Monte Carlo transport codes
where cross sections for individual elements or isotopes are represented by many thousands of
energy points, using different tabulated energies for each material  (for example, see reference 8).
In comparison it seems that the improvements in photon evaluations have not been incorporated
in codes and many continue to used fixed energy grids for all materials, even though in terms of
the number of tabulated energy points required, the problem of using different tabulated energies
for each element for photon transport is orders of magnitude simpler than in the case of neutrons.
As we extend our computer codes to treat an very expanding variety of applications in more and
more detail and ask for ever improving accuracy, we should consider improving our treatment of
photon data in order to insure accuracy in our results.
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Fluorescence

Fluorescence yield is a function of atomic number (Z).  For the K shell it varies from close to
100% for fermium (Z = 100) to essentially 0% for hydrogen (Z = 1).  It is also a function of shell,
decreasing by roughly a factor of 10 for each successive shell, e.g., from close to 100% for K,
about 10% for L, etc.  It is also a function of energy, being important only close to photoelectric
edges.  Therefore, we need not be concerned with low Z elements, or high energy applications,
well above the K edges of all materials involved.  However, we should look at high Z elements for
lower energy applications, i.e., below a few MeV.

The following example illustrates the effect of fluorescence. In this example Epicp's option to turn
fluorescence on or off has been used. When fluorescence is turned off, at each photoelectric event
all of a photon's energy is deposited locally, at the site of the event. When fluorescence is turned
on, a portion of the photon's energy can be re-emitted as fluorescence x-rays, usually just below
the photoelectric edges. If these re-emitted x-rays deposit all of their energy we expect the overall
deposition to be the same as when fluorescence is turned off. However, if they leak from our
detector the deposition will be decreased. Therefore with fluorescence we expect the overall
deposition to be equal to or less than the deposition without fluorescence. Even in the case where
the overall deposition is the same, fluorescence can effect the spatial distribution of the
deposition.

In the following example I will use a bremsstrahlung spectrum filtered through cadmium; see
figure 12. I will use a cylindrical detector composed of the following atom fractions: 53-I, 1 atom,
55-Cs, 1 atom, 81-Tl, 0.012801 atoms, normalized to an overall density of 4.51 grams/cc. Figure
13 illustrates the cross sections for this composition and each element. The detector is 13.1072
cm in radius and 0.0111 cm thick. We expect fluorescence to be most important for high Z
elements, so that this is by no means the most important case in which to consider the effect of
fluorescence. However, it will serve to illustrate that fluorescence is an important effect even for
elements in the middle of the periodic table.

In this case since there is essentially no lateral leakage, we need only look at the reflection,
transmission and deposition to see what happened. To be able to easily interpret these results
figures 14 through 16 present: 1) results with fluorescence turned on, 2) results with fluorescence
turned off, 3) both results on the same figure.

Without fluorescence (see figure 15) essentially the only process that is contributing anything is
photoelectric and what we see is simple exponential attenuation of the incident source spectrum
according to the strength of the source and the magnitude of the cross section at each energy.

With fluorescence the results are quite different. In this case by comparing the two results (see
figures 14 through 16) we can see that with fluorescence the deposition at higher energies (~ 35-
50 keV) is significantly less than without fluorescence. In addition, with fluorescence we see a
peak in the deposition in the ~ 5-20 keV range that simply doesn't exist in the results without
fluorescence. We can also see the narrow peaks in the reflection and transmission due to
fluorescence. What the results indicate is that with fluorescence turned on, statistically in some
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events fluorescence does not occur and the deposition at higher energy (~35-50 keV) is similar in
shape to the results with fluorescence turned off, since both correspond to events in which no
fluorescence occurred. The magnitude is suppressed in proportion to the probability of
fluorescence not occurring. The second peak in the deposition in the ~ 5-20 keV range
corresponds to those events in which statistically fluorescence did occur, the fluorescence x-rays
leaked from the detector and the remaining energy was deposited; this is similar in shape to the ~
35-50 keV portion of the deposition curve, merely shifted to lower energies by the amount of
fluorescence energy that has leaked from the detector. Since without fluorescence this peak
cannot occur it is not see in the results when fluorescence is turned off, nor is any of the other
narrow sharp peaks in transmission, reflection or deposition present.

Not only are the energy dependent results different; the integral results are also quite different.
With fluorescence about 43.3 % of the energy is deposited, 8.1 % reflected, and 48.5 %
transmitted. When fluorescence is turned off the results change to 57.5 % deposited, 0.2 %
reflected and 42.3 % transmitted. Without fluorescence at each photoelectric event all of the
photon's energy is deposited (57.5 %). With fluorescence a portion of the energy is re-radiated
and more energy leaks from the detector, decreasing the deposition to 43.3 %, and increasing
both reflection and transmission. Note, in particular the dramatic difference in reflection: 8.1
versus 0.2 %. In this energy range the cross sections above the photoelectric edges are so large
that fluorescence is almost a surface effect. A large number of photoelectric events are occurring
very close to the incident surface of the detector. Fluorescence x-rays are being created at
energies below the photoelectric edge where the cross section is much smaller, allowing these x-
rays to leak from the detector; particularly at the nearest, reflection, surface. From figure 16
comparing results with and without fluorescence we can see that virtually all of the reflection is
due to the two very narrow fluorescence lines near 28 and 31 keV.

In summary, for applications involving high Z elements, below a few MeV, it is important to
include the effect of fluorescence in order to obtain realistic calculational results.  At higher
energies the photoelectric cross section is so small that the probability of a photoelectric event,
and therefore, fluorescence is very small.  Therefore, it isn’t necessary to build into codes a rule of
thumb to ignore fluorescence above some incident photon energy; it happens naturally based on
the cross sections.

Incoherent Scattering

Fig. 17 summarizes the effect of the scattering function on the incoherent cross section.  This
effect is important at low energies and extends up to several hundred keV in high Z elements.
Without the scattering function the incoherent cross section, defined by integrating the Klein-
Nishina formula, approaches a constant value at low energy.  With the scattering function it
approaches the correct zero limit as E2 at low energy.  At lower energies where both coherent and
incoherent cross sections are approaching zero as E2, obviously including the effects of
anomalous scattering and the scattering function, greatly reduces total scattering.  Since the effect
of the scattering function on the incoherent cross section has been included in the Epic incoherent
cross sections, we need not explicitly consider the effect further.  However, we do have to
consider the effect on scattering angle and energy loss.
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For Compton (incoherent) scattering, compared to only using the Klein-Nishina formula, the
scattering function causes photons to scatter through larger angles and lose more energy. In the
following example the same detector as described above has been used and Epicp's option to turn
the scattering function on and off has also been used. When Epicp's option to turn off the
scattering function is used the incoherent cross section calculated including the effect of the
scattering function is still used, but the scattering function is not used to define the angular and
energy distribution of scattered photons; only the Klein-Nishina formula is used. From the plot of
the cross sections (see figure 13) we can see that Compton scattering is the largest cross section
near 1 MeV. The following results are for monoenergetic 1 MeV photons incident on a detector 3
cm thick.

In this case there is very little difference in the total energy deposition: about 27 % is deposited
due to incoherent and 11.5 % due to photoelectric. About 60 % of the energy is transmitted. The
biggest difference that we see is that without the scattering function about 0.9 % of the energy is
reflected and with the scattering function about 1.7 % is reflected; almost a difference of a factor
of two. These results are consistent with our expectation that the scattering function will cause
photons to scatter through larger angles, thereby increasing the reflection. This seems to be a
small effect, but if you are interested in back scattering it can be a rather important effect for your
applications.

In low Z elements the Compton cross section is dominant over a fairly large energy range (see
figure 7). In the following example I consider Z=1, hydrogen, at a density of 1 gram/cc, for three
different monoenergetic source energies: 1 MeV, 100 and 10 keV. I have used a large radius, so
this is essentially a plane of hydrogen. In each case the detector thickness has been selected to
allow roughly half the energy to be transmitted: very roughly half.

At 1 MeV, the energy results with the scattering function are: 54.2 % deposited, 10.1 % reflected
and 35.7 % transmitted and without it: 55.3 % deposited, 4.5 % reflected and 40.2 % transmitted.
In this case virtually all of the deposition is due to incoherent scattering. Note that with the
scattering function the reflection has more than doubled. Even though each scatter with the
scattering function causes photons to lose more energy, the increase in the reflection contributes
to decreasing the total number of scatters in the detector, leading to the small decrease in
deposition.

At 100 keV, the energy results with the scattering function are: 13.8 % deposited, 29.3 %
reflected and 56.9 % transmitted and without it: 14.8 % deposited, 19.2 % reflected and 66 %
transmitted. In this case incoherent scattering still contributes the majority of the deposition, but
there is a small contribution from photoelectric. Compared to the 1 MeV case, in this case
incoherent scattering is less effective in depositing energy.

At 10 keV, the energy results with the scattering function are: 4 % deposited, 50.4 % reflected
and 45.6 % transmitted and without it: 4.4 % deposited, 32.9 % reflected and 62.7 % transmitted.
The energy deposition due to Compton has now been drastically reduced, because at
progressively lower energies Compton becomes a progressively less effective process for losing
energy. The maximum energy loss per photon collision is roughly: 1 keV ~ 0.4%, 10 keV ~ 4%,
100 keV ~ 28%, 1 MeV ~ 80%. Even though at lower energies incoherent scattering does not
deposit much energy, at lower energies the scattering function will tend to make the photons
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scatter through larger angles, which explains the reflection and transmission results. In this case
the photons merely rattle around without losing very much energy and then leak.

These results indicate that the effect of the scattering function is appreciable when Compton
scattering is important. For example, if you have an object that contains a lot of hydrogen, like
your body, and you want to predict what will appear on a x-ray plate after transmission through
the hydrogen, the above difference in the transmission indicates that it is important to include the
scattering function in your calculations.

Coherent Scattering

Fig. 18 summarizes the effect of anomalous scattering on the coherent cross section.  This effect
is important at low energies and extends up to several times the K edge energy, i.e., about 1 MeV
in high Z elements.  Without anomalous scattering, the coherent scattering approaches a constant
value at low energy.  With anomalous scattering it approaches the correct zero limit as E2 at low
energy.  In uranium the difference at 10 eV is about 5600 barns without anomalous scattering and
10 barns with it (a factor of 560 difference).  Near photoelectric edges, anomalous scattering
causes a significant decrease in the coherent cross sections, which leads to lowering of the cross
sections just below the edges, allowing increased transport of photons.  Since the effect of
anomalous scattering has been included in the Epic coherent cross sections, we need not explicitly
consider the effect further in applications, i.e., the effect is automatically included. However, we
do have to consider the effect of the form factor on the angular distribution of coherently
scattered photons.

For Rayleigh (coherent) scattering, compared to only using the Thomson formula, the form factor
causes photons to scatter through smaller angles (more forward peaked scattering), which causes
photons to transport further in their initial direction of travel. Coherent scattering is never the
largest cross section, but it can have a significant effect in high Z elements just below the K edge,
where it is about 10 % of the total cross section.

The following example uses 0.254 cm of lead at 11.72 grams/cc, with 80 keV photons incident
(just below the lead K edge). The Epicp option to turn the form factor on or off has been used.
When the form factor is turned off the cross sections calculated using the form factor are still
used, but the form factor is not used the calculate the angular distribution of scattered photons;
only the Thomson formula is used. In this case compared to the results without the form factor,
using the form factor increases transmission by about 25 %, and decreases the reflection by more
than a factor of two. These results are consistent with our expectations, since the form factor
causes photons to scatter through smaller angles, continue to transport forward, and increase
transmission.

Generally considering coherent scattering and ignoring the form factor is a very poor
approximation. At higher energies the factor form makes coherent scattering so forward peaked,
that a better approximation than using the coherent cross section and ignoring the form factor, is
to completely ignore coherent scattering, i.e., set the coherent cross section equal to zero. I am
merely pointing this out; I am not recommending it.
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Spatial Dependence

In discussing the effect of the scattering function and form factor we have only considered integral
results, i.e., deposition, reflection, transmission. Even in the cases where the overall deposition
has not changed, the differences that we can see in reflection and transmission indicate that the
spatial distribution of the deposition has changed. In the example lead case described above even
though the overall deposition is about the same, if you are interested in the deposition half way
through the lead, with the form factor the deposition is about 15 % higher.

Multi-Group Calculations

Above I have only discussed Monte Carlo, but it is worth noting that the Epic photon data base
can also be used in multi-group calculations.  Both the Epic data used here and the ENDF/B-VI
data are based on the Livermore EPDL data. The tabulated linearly interpolable Epic cross
sections are easier to use than the ENDF/B-VI formatted data to define multi-group averages.
The analytical forms for coherent and incoherent scattering and fluorescence can be easily used to
define group to group transfer matrices.  In the case of scattering, the results should be identical
to those obtained using the ENDF/B-VI data.  In the case of fluorescence, Epic contains more
detail than allowed in the ENDF/B-VI formats.

What’s next?

As far as qualitative results, the above examples illustrate the relative importance of how cross
sections are represented, fluorescence, scattering functions, form factors and anomalous scattering
factors. These results should be treated only as qualitative, not quantitative results that can
simulate real physical situations. The conclusions reached as far as the importance of each effect
are valid, but the absolute values of deposition, transmission, etc., should be taken with a grain of
salt until the calculations are performed in more detail. This is because in this paper I have only
looked at one portion of the picture of photon transport. The effects of electron and positron
transport must be considered in order to complete the picture.

For example, if a 20 MeV photon undergoes a pair production event, the simplest assumption is
that eventually the positron will come to rest and annihilate, creating two 0.511 MeV photons.
But we should ask:  of the initial 20 MeV we got back about 1 MeV of energy in the form of our
two 0.511 MeV photons.  What happened to the other 19 MeV?  Similarly, if a 20 MeV photon
undergoes an incoherent scatter it can lose up to almost 99% of its energy.  We can continue
tracking the scattered photon, but what happened to the 99% of the energy?

The most common assumption used in many photon transport codes is that any energy lost by the
photons is deposited locally at the point where each event takes place.  In fact, none of the
processes that I have discussed in this paper allow photons to directly deposit energy; all that
photons can do is transfer their energy to electrons and positrons.  So that the proper way to
answer the questions that I asked above is to consider what happens to the electrons and
positrons that receive energy from photons.  In the case of a 20 MeV pair production, do the
electron and positron really stop and deposit all of their energy very close to where the pair
production occurred, or do they travel and maybe even escape from the medium?  The same
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should be asked of electrons that receive energy from incoherent scattering events.  What about
feedback?  Is it important to consider bremsstrahlung, that will create more photons?  What about
electron ionization, that can lead to fluorescence?

I am not going to even try to cover this topic here.  That’s what I will cover next:  A Simple
Model of Electron Transport.

Conclusions

In this paper I described a simple model of photon transport.  This simple model includes:
tabulated cross sections and average expected energy losses for all elements between hydrogen (Z
= 1) and fermium (Z = 100) over the energy range 10 eV to 1 GeV, simple models to analytically
describe coherent and incoherent scattering, and a simple model to describe fluorescence.  This is
all of the data that is required to perform photon transport calculations.

Each of these simple models was first described in detail.  Then example results are presented to
illustrate the accuracy and importance of each model.

These models have now been implemented in the Epic (Electron Photon Interaction Code).  All of
the figures and results presented here are from Epicshow, an interactive program to allow access
to the Epic data bases, and Epicp, a simple photon transport code designed to develop optimum
algorithms for later use in Epic.  All of the data described in this paper and all of the programs
needed to use it, are available from the author.

Throughout the paper, I have tried to define where various models are important:  fluorescence
and scattering function at low energy, form factor at high energy.  I have also tried to define
guidelines as to where various models can often be ignored, e.g., the scattering function at high
energy.  Here, I will present a somewhat different viewpoint.  Where these models are
unimportant, the events that use them are highly unlikely.  For example, at high energy the
photoelectric cross section is so much smaller than the other cross sections, that the probability of
a photoelectric event is highly unlikely; therefore, so is fluorescence.  The same is true at high
energy for coherent scattering.  Since these events are highly unlikely, whether they are treated
exactly or using an approximation will not have a significant effect on running time.  When a fixed
energy grid is used it is adequate for most applications, and can decrease running time for
complicated problems, but it may or may not give accurate answers for any specific application.

Photons are quite different from neutrons, electrons, positrons and charged particles, in that in all
elements, at all energies, the expected energy loss due to even one event is a significant fraction of
the photon's energy. Photons do not have many collisions or events before they “disappear.”
Unlike other particles that undergo many events, each of which may have little effect on the
overall history of the particles, for photons each and every event can have a major impact on a
history. Therefore, care has to be used to model each and every event as accurately as possible if
we are to expect accurate answers in as many different applications as possible.

The bottom line is:  can you afford to have a transport code that works for most applications - but
may not work for the specific applications that you are interested in.  Using a fixed energy grid
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can reduce running, but most other approximations discussed here have little effect on running
time, but may prevent a code from giving accurate answers in certain applications - certain
applications that the user will not be able to predict in advance nor be able to recognize the
answers to be inaccurate.  When we look at efficiency and even running time the real bottom,
bottom line is Howerton’s first theorem:  “We are in no rush for the wrong answer” (11).
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8) Example Epicp Monte Carlo transport results
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11) Comparison of EPDL and 401 point K edge parameters
12) Example Incident Photon Spectrum
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15) Energy Deposition without Fluorescence
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17) Effect of Scattering Function on the Incoherent Cross Section
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